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Interest has been raised into 
the protective role of the oxygenated 
xanthophylls group of carotenoids in the 
eye, particularly the retina. This group 
includes lutein, zeaxanthin, and meso-
zeaxanthin, and they are the only carote-
noids present in the lens1 and retina.2-5 
Within the retina they are also known as 
macular pigment (MP), and the proposed 
specific function of xanthophylls at the 
macula is supported by the fact that 
macular levels are several thousand times 
higher than serum levels.6 

Macular pigment structure

In the central macula, lutein, zeaxan-
thin, and meso-zeaxanthin are found in 
equal quantities, but the ratio of meso-
zeaxanthin to zeaxanthin decreases with 
increasing eccentricity.7 Meso-zeaxan-
thin has been found in the human macula, 
retina and retinal pigment epithelium 
(RPE), but not in the plasma or liver.8 
This forms the basis for the assump-
tion that meso-zeaxanthin is formed 
via isomerisation of lutein,7 and is not 
obtained directly through the diet. The 
conversion mechanism is thought to be 
concentrated at the macula.7 A putative 
lutein-binding protein has been found 
in the retinae of human eyes,9 which 
binds with high affinity and specificity to 
lutein and other xanthophylls. It has been 
suggested that people who are less respon-
sive to xanthophyll supplementation may 
be so because of genetic differences that 
result in reduced or less efficient binding 
proteins.10 This protein may also act as 
an enzyme for the conversion of lutein to 
meso-zeaxanthin.

In human retinae the xanthophylls 
are concentrated mainly in the inner and 
outer plexiform layers. The ratio of lutein 
to zeaxanthin and meso-zeaxanthin within 
0.25mm of the fovea is approximately 
1:2.4,11 but the situation reverses at the 
retinal periphery, where the ratio is 2:111 

(Figure 1). 
Xanthophylls have also been isolated 

in the rod outer segments12,13 where there 
is a high concentration of polyunsaturated 
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fatty acids that are particularly prone to 
oxidative attack. Within the rod outer 
segments, their highest concentration is 
found perifoveally, where it is 2.5 times 
higher than in the peripheral retina.13 

The MP may prevent light-initiated 
oxidative damage to the retina and 
therefore protect against subsequent age-
related deterioration.14 The presence of 
MP in the inner retinal layers15 supports 
a photoprotective role. The absorbance 
spectrum of MP peaks at 460nm and it 
is purported to act as a broadband filter, 
reducing the sensitivity of the macular 
region to short wavelength light which 
is most damaging in the 440 to 460nm 
range.16,17 Lutein is reported to be a 
superior filter,18 given it is orientated both 
parallel and perpendicular to the plane of 
the membrane.19 Zeaxanthin is orientated 
perpendicular to the membrane plane 
only, and so may not be able to absorb the 
excitation beam from all directions (Figure 
2). Zeaxanthin however, is reported to be a 
superior photoprotector during prolonged 
light exposure; the shorter time-scale 
of protective efficacy of lutein has been 
attributed to oxidative damage of the 
carotenoid itself.19 

Carotenoids are also able to quench 
singlet oxygen (a potent oxidant),20 
scavenge reactive oxygen species,21 limit 
peroxidation of membrane phospholi-
pids,22 and reduce lipofuscin formation.23 
The presence of MP in the rod outer 
segments and RPE12,13 is suggestive 
of a reactive oxygen species (ROS) 
– quenching function. The fact that 
lutein and zeaxanthin have been found 

in higher concentration in the rod outer 
segments of the perifoveal retina than the 
peripheral retina, lends support to their 
proposed protective role in age-related 
macular disease (AMD).12 The negative 
effect of oxidative processes in the retina 
is clearly demonstrated in Stargardt’s 
disease (a macular condition reminiscent 
of AMD that occurs in the second or third 
decade), in which there is a genetic defect 
that results in lack of control of oxidative 
processes.24,25

In vivo measurement of 
macular pigment optical 
density

The term macular pigment optical density 
(MPOD) refers to the amount of macular 
pigment in the retina. MPOD in the 
central 1-2 degrees of the macula lies in 
the range 0.1 to 0.9 for most people.26,27 
For a person with MPOD at the low end of 
this range, structures posterior to the MP 
will be exposed to approximately six times 
the blue light flux compared to a person 
with MPOD at the higher end of the 
range.28 It follows that there is a suspected 
increased risk of AMD development for 
those with low MPOD levels. It has also 
been noted that geographic atrophy tends 
to spare the very central macula, where 
MPOD peaks, at least until the disease is 
well advanced.29, 30

Psychophysical methods

The psychophysical approach to MPOD 
measurement is based on the fact that 
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 Figure 2. Structure of macular pigment Figure 1
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the MPOD acts as a broadband filter in 
to 440 to 460nm range. In heterochromic 
flicker photometry,31-33 a blue reference 
light, close to the optical peak density of 
MP (450nm) is alternated with a light of 
variable wavelength. This is set to a value 
which is not absorbed by the MP, such as 
560nm.34 While viewing this flickering 
stimulus, the luminance of one of the 
lights is altered until the perceived flicker 
is minimised. At the minimum flicker 
point, the perceived luminance of the 
two lights is equalised. The perceived 
intensity of the blue reference light will 
be relatively low when viewed at the fovea 
(where MP is relatively high), compared 
with a point outside the fovea (where there 
is less MP). The difference between the 
ratios of the luminance of the two lights 
obtained at foveal and para-foveal points is 
used to derive the MPOD. Although this 
technique is reproducible and exhibits 
good test-retest reliability,35 it is difficult 
for the subject to perform,36,37 and requires 
good visual acuity. It is also associated with 
high variability in subjects with low levels 
of MPOD.38 A commercial instrument 
that employs this technique for measure-
ment of MPOD is the MacuScope and 
is available from Birmingham Optical 
Group. (See page 25).

Apparent motion photometry

A more recent development in MPOD 
measurement is based on an apparent 
motion phenomenon reported by 
Anstis and Cavanagh39 for matching 
the luminance of different colours. This 
technique has the advantage of simplicity 
when used for adjusting colour luminance 
on television displays. If a red/green 
square-wave grating is suddenly replaced 
with a dark yellow/light yellow square-
wave grating which is displaced by one-
quarter of a cycle to the right, then the 
grating will appear to jump to the left if 
the green bars are lighter than the red 
bars, or to the right if the reverse is true.39 
But if the red and green bars are made 
equiluminous, no consistent apparent 
motion is seen.

An MPOD measurement technique 
developed by Cambridge Research 
Systems (www.crsltd.com) uses a stimulus 
made up of four consecutively presented 
square wave gratings, each 90 degrees out 
of phase with the next (Figure 3). The 
first grating is a chromatic grating of red 
and blue bars. The luminance of the blue 
is fixed, while the red luminance can be 
varied.

The second grating is a purely 
luminance modulated grating, modulated 
around the mean luminance of the blue/
red chromatic grating. If the luminance 
of the red component in the chromatic 
grating is greater than the blue, the 
observer correlates that with the brighter 
of the bars of the luminance grating when 
it is presented. However if the luminance 
of the red is less, then it is correlated with 
the darker bar in the luminance grating. 
This continues in successive grating 
presentations, so that the sequence of 
gratings appears to move in one direction 
or the other, the direction being solely 
dependent upon the relative luminance 
of the two components in the chromatic 
gratings. The subject is simply required 
to decide which way the grating is drifting 
in a two alternative forced choice (2AFC) 
weighted up/down staircase procedure 
(Figures 4 and 5).

The Apparent Motion Photometer 
(AMP) uses a parafoveal point as a reference 
point and can be programmed to take MP 
measurements at various locations. This 
has the advantage of permitting a profile 

of MP to be built up, but has the disadvan-
tage of longer testing times. Good contact 
lens visual acuity is required.

Raman spectroscopy

This technique is based on the Raman 
effect, which is the inelastic scattering of 
photons by the molecules under investi-
gation. In other words, the wavelength of 
a small fraction of the radiation scattered 
by certain molecules differs from that 
of the incident beam, and the shift in 
wavelength depends on the chemical 
structure of the molecules responsible 
for the scattering. This phenomenon 
has been used in assessment of MPOD 
because when carotenoids are excited 
with a monochromatic laser beam, they 
exhibit characteristic wavelength shifts 
of the back-scattered light. A blue/green 
argon laser is used to excite the electronic 
absorption of carotenoid pigments.40 The 
resultant Raman signals generated are 
recorded and analysed by a spectrometer. 
This technique has the advantage that it 
can be used to assess MPOD in AMD-
affected eyes. This technique is reported 
to be highly reproducible and not subject 
to meaningful test-retest variability,41 
although it has only been used in a 
research setting.

Imaging techniques

Fundus reflectometry involves measuring 
the reflectance of short wavelength light 

(462nm) that has passed through 
pigment-containing layers of 
the retina twice.42 A digitised 
image obtained at an illumi-
nating wavelength of 559nm is 
subtracted from one taken at 
462nm to correct for the absorp-
tive effects of melanin and 
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 Figure 3. Apparent motion photometry (AMP)

The four gratings are presented sequentially. Each is phased 
90° (quarter of a cycle) ahead of the previous

When the red bars are brighter 
than the blue, there is apparent 

motion to the right

When the blue bars are 
brighter than the red, there is 
apparent motion to the left

Based on Anstis & Cavanagh (1983) A minimum motion technique for 
judging equiluminance

Figure 4. MPOD measurement technique developed by 
Cambridge Research Systems

Figure 5. The Apparent Motion 
Photometer
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oxyhaemoglobin. This provides the spatial 
variation of the MP.

Scanning laser ophthalmoscopy (SLO) 
can also be used to produce fundus reflect-
ance maps, and this method is reported 
to be more resistant to light scatter than 
conventional fundus reflectometry.43 
Digital subtraction of the maps at 488 and 
514nm, with adjustments made for absorp-
tion of the lens, provides a mean value 
of MPOD.44 A major advantage of this 
technique is its objectivity. A disadvan-
tage of this technique is that it requires 
a normal retinal structure, and therefore 
is not suitable for use in patients with 
advanced AMD.

Conclusion

Evidence suggests that xanthophylls 
may have antioxidant and photopro-
tective effects within the retina. The 
ability to measure macular xanthophylls 
is of importance for further investiga-
tion of these roles, as well as for dietary 
supplementation studies. Psychophys-
ical methods have dominated macular 
pigment measurement in recent trials, but 
are difficult to perform. Future develop-
ment of a clinical instrument is likely to 
involve objective imaging techniques.
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