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c l i n i c a l

Spherical aberration has always been 
considered to be important in the case of 
the eye, since it is the only monochromatic 
aberration that would be expected to occur 
on the axis of a centred optical system. In 
practice in individual real eyes, which almost 
always lack a true optical axis, coma and the 
other aberrations are often equally or more 
important. Interestingly, however, whereas 
the values of the individual higher-order 
Zernike coefficients  in a population of 
normal eyes tend to be randomly  distrib-
uted about zero, so that their mean is zero, 
the fourth-order spherical aberration coeffi-
cient C4

0 is systematically biased in the 
positive direction. The population mean 
for C4

0,   therefore, is positive, corresponding 
to under-corrected spherical aberration, a 
typical finding23 being a value of about 0.15 
microns for a 5.7mm pupil diameter. How 
can we translate such findings into their 
dioptric equivalents?                  

From Table 1, for the relevant fourth-
order Zernike polynomial, the wavefront 
aberration is: 

 Wr = C4
0.√5.(6(r/rmax)4 - 6(r/rmax)2 + 1)

Note the absence of θ in this expres-
sion, implying  rotational symmetry 
about the pupil centre. The second-order 
and constant terms of the polynomial 
represent balancing defocus and piston 
terms and can be ignore as far as the 
changes in power with r, which represent 
the spherical aberration, are concerned.

Differentiating the r4 term gives:

dWr/dr = (24.√5.C4
0.r3)/rmax

4

But each zone of the wavefront has an 
effective focal length f and power F. Since 
the rays are everywhere perpendicular to 
the wavefront, ignoring signs, the slope of 
the wavefront in the zone is the reciprocal 
of the slope of the corresponding rays. 
Hence 

 
dWr/dr =(24.√5.C4

0.r3)/rmax
4 = r/f = rF

where f and F are the focal length and 
power of the zone respectively.

ie F = (24.√5.C4
0.r2)/rmax

4

and F/r2=(24.√5.C4
0)/rmax

4 dioptres/mm2

where the coefficient  is in microns. 

It is again usual to think in terms of 
corrections, so that, in dioptric terms, the 
primary spherical aberration equivalent 
to C4

0 is: 

Fsa/r
2= -(24.√5.C4

0)/rmax
4 dioptres/mm2  

..........(11)

Thus the C4
0 value of 0.15 microns for a 

5.7mm diameter pupil as found by Porter 
et al23 corresponds to:

Fsa/r
2 = -(24.√5.0.15)/(2.85)4 dioptres/mm2 

= -0.12D/mm2

This in turn is equivalent to under-
corrected spherical aberration of about 
1.08D at the edge of a 6mm pupil, which 
agrees quite well with traditional values in 
the older literature.24 

If required, it is possible to extend the 
basic arguments and equations to include 
the Z6

0 and Z8
0 polynomials, which 

obviously represent spherical aberration 
which varies with the sixth and eighth 
powers of r, as well as including fourth-
order spherical aberration and other terms. 
Inclusion of these terms might well be 
important after, eg myopic refractive 
surgery by photorefractive keratectomy 
(PRK) or laser assisted keratomileusis 
(Lasik) where only the central zones of 
the pupil are flattened and the periphery 
may remain steep, so that power changes 
rapidly in the outer zones of a dilated 
pupil. For example, if we consider so-
called secondary spherical aberration 
polynomial:

Z6
0 = √7.(20ρ6 - 30ρ4  + 12ρ2 -1)

this contributes secondary spherical 
aberration (the ρ6 term), primary spherical 
aberration (the ρ4 term) and defocus (the 
ρ2 term).

We have already seen how the defocus 
term modifies the overall spherical 
dioptric error (equation 4). The primary 
spherical aberration given by equation 
(11) is modified by the ρ4 term to yield: 

Fsa/r
2 = -(24.√5.C4

0 - 120.√7.C6
0)/rmax

4 

dioptres/mm2 ................(12)

The secondary spherical aberration 
contributed by the polynomial is:
 
Fsa/r

4 = -(120.√7.C6
0)/rmax

6 dioptres/mm4 
..............(13)

DISCUSSION

We can see that it is possible to extract 
from the overall wavefront aberration of 
the eye a sphero-cylindrical correction 
based either only on the second-order 
Zernike coefficients (the least-squares 
correction) or on all the relevant coeffi-
cients (the paraxial correction). The 
work of Atchison et al14 and Thibos et al15 

suggests that, if the Zernike coefficients 
are derived with relatively large pupils 
(around 6mm or above), the paraxial 
correction is more useful, but that if the 
Zernike coefficients are derived for a small 
pupil (eg 3mm) the least-squares, second-
order correction may be adequate.

The ‘equivalent defocus’ is a useful 
approximate way of envisaging in dioptric 
terms the degree of blur associated 
with single Zernike coefficients or their 
combinations for a particular pupil size, 

although it must not be used too uncriti-
cally. It may sometimes be helpful to 
express the Zernike spherical aberration 
coefficients in dioptric terms, since these 
are used to specify ocular spherical aberra-
tion in most earlier work.

Finally it is worth reminding ourselves 
that a Zernike analysis, and the designs 
of most aberrometers, work best when 
the wavefront aberration varies fairly 
smoothly across the pupil. Aberrometers 
may have considerable problems when 
there are rapid changes in wavefront 
error between closely neighbouring areas 
of the pupil, as might happen after some 
refractive surgery procedures, as a result 
of the wear of bifocal or mutifocal contact 
lenses with sharply defined regions of 
differing power, or corneal abnormalities. 
In Hartmann-Shack designs, for example, 
aberrometers may not sample the pupil 
at sufficient density to identify small-
scale features in the wavefront, or there 
may be excessive displacement of the 
image spots of the Hartmann-Shack array, 
resulting in spot overlap and confusion 
(see, for example4,5,7). High degrees of 
scatter or absorption in the eye media, for 
example as a result of cataracts, may make 
measurements unreliable or impossible. 
Even if the overall form of the wavefront is 
correctly deduced, description of highly-
aberrated, irregular wavefronts requires 
the use of a very large number of Zernike 
coefficients and it is doubtful if these can 
be calculated accurately enough. 
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