
T
he need for low cost and low power

consumption drives semiconductor

manufacturers towards making devices on

advanced processes. But it is possible to reduce

cost, size and power consumption through

architectural optimisation. These non expensive

optimisation methods are often overlooked and

this is a missed opportunity for further cost and

power reduction.

Cost and power reduction

According to IBS, the average cost of developing a

chip has risen from $45million at 65nm to $150m

at 22nm. This higher investment eventually pays

for itself by lowering chip cost. The main reason

that semiconductor companies develop chips on

advanced process nodes is the promise of cost

and power consumption reductions.

In general, device cost decreases in the more

advanced smaller process nodes, although it

takes time until the process node matures and

achieves better yield performance than the

previous node. For this reason, it takes time for

the minimum cost point to move the last two

state of the art advanced process nodes. In fig 1,

Fp is the process cost optimisation factor and, in

this example, is the process cost optimisation

factor between a device made on a 65nm process

(point A) and the same part made on a 45nm

process (point B) without architecture

optimisation. Meanwhile, Fa is the architecture

cost optimisation factor. In fig 1, this is the cost of

a device made on a 45nm process (point B)

without architecture optimisation and with

architecture optimisation (point D). The best way

of minimising cost is to switch to a 45nm process

and employ architecture optimisation.

In fig 2, the minimum power consumption is

achieved through moving from a 32nm process

to the 22nm node (points A and B) and through

architecture optimisation at 22nm (point D).

Symmetry 

In many wireless and video algorithms, application

special characteristics can be exploited for

architectural optimisation. For example, it is

common to have finite impulse response (FIR) filter

based algorithms and applications with

symmetrical coefficients (fig 3). 

Symmetrical FIR filters have an even number

of taps and each coefficient at the same distance

from the centre has the same value. It is

therefore possible to do one multiplication with

the sum of the two samples related to the same

two coefficients in a specific time. This halves the

number of multipliers and the related logic

required for the FIR filter implementation. 

While FIR filters with odd symmetry have an

odd number of taps, each two coefficients still

have the same distance from the centre and the

same value; only the centre coefficient doesn’t

have another tap with the same value. The

number of multipliers required to implement an

odd symmetry FIR filter can be reduced by

2n/(n+1), where n is the number of taps. This

reduction factor closes on 2 as the number of

taps grows.

An additional characteristic can be exploited in

half band symmetric FIR filters. Here, each

second coefficient, except for the centre

coefficient, is zero. Since these filters are also

odd symmetric FIR filters, it is possible to reduce

the number of required multipliers by up to a

factor of four. 

Operations with 2d symmetry are very

common in video applications. In fig 4, the 5x5

2d FIR filter’s vertical and horizontal symmetry

means each circle with same colour represents a

coefficient with the same value. It is possible to

exploit 2d symmetry so the same multiplier can

be used for all pixels with the same coefficient

value. As shown in fig 4, there are cases of 4, 2

and 1 pixels with the same coefficients.

Therefore, the potential exists for the size of a

generic matrix to be reduced by up to four times.

Complex multiplication 

Significant portions of wireless and

communications applications are based on

algorithms featuring complex numbers, such as
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Fig 1: Device cost optimisation
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Fig 2: Device power consumption optimisation
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I and Q channels and symbol modulation.

Complex multiplication between complex

sample (a + jb) and complex coefficient (C + jD)

could be implemented with four multiplications:

(a + jb)*(C + jD) = (a*C – b*D) + j(a*D + b*C)

With some algebraic manipulation, the same

result can be obtained using three multiplications.

= a*C – b*D + (a*D – a*D) + j(a*D + b*C + (a*C – a*C))

= a*(C+D) – (a+b)*D + j(a*(C+D) + (b-a)*C)

Since the silicon area required to implement a

multiplier is significantly larger than that required

to implement adders and subtractors, this allows

for size reduction.

Double data rate

Double data rate throughput optimisation is a

special architectural technique designed to

overcome fabric throughput issues common to

fpgas. While the dsp slices in an fpga have a

similar size efficiency to those in an asic made

on a similar process node, they have a flexibility

advantage. The problem is that, in many cases

where fpga utilisation is high, the fabric’s

relatively lower operation frequency creates a

throughput bottleneck.

The LatticeECP4 fpga has innovative

throughput boosting interfaces embedded into

the dsp slices. This enables the part to offer

double the throughput of other fpgas. Using this

feature means the LatticeECP4 can implement

complex dsp functions using half the number of

multipliers that would be required by other fpgas.

This optimisation enables significant system

cost and size reduction, as well as decreased

power consumption.

In many cases, different architectural

optimisation techniques can be combined to

achieve higher levels of cost and power reduction. 

Most FIR filters implemented in wireless or

video applications are symmetric. Implementing

a 64 tap symmetric FIR filter with an input data

rate of 245.76Msample/s in a typical fpga would

require 64 18 x 18 multipliers. The LatticeECP4

can implement the same FIR filter using 16 18 x

18 multipliers, approximately four times smaller.

This provides other benefits, including an

approximate halving of power consumption and

the opportunity to fit the design into a smaller

fpga, which further reduces cost.  

Similarly, half band filters and double data rate

optimisation could be implemented in other

digital up and digital down converter interpolation

or decimation filters. In these cases, the cost and

power savings are even higher – approximately

eight and four times respectively. 

Summary

Architectural optimisation is a relatively

inexpensive way to reduce silicon device cost

and power consumption. There is no reason why

semiconductor companies or their customers

should not take advantage of these ‘low hanging

fruits’ instead of investing in developing devices

targeted at expensive advanced process nodes. 

In many cases, a combination of different

methods of architecture optimisation – such as

data flow optimisation, algorithm characteristics

optimisation or/and algebraic optimisation –

can result in cost being halved and power

consumption being reduced by a factor of eight. 
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Even symmetry definition
Y(i) = h(1)*X(i+n) + h(2)*X(i+n-1) + … + h(n-1)*X(i+2) + h(n)*X(i+1)
Coefficients: h(1)=h(n), h(2)=h(n-1), ... {n is even}
Therefore: 
Y(i) = h(1)*[X(i+n) + X(i+1)] + h(2)*[X(I+n-1) + X(I+2)] + ... + h(n)*[X(i+n/2) + X(i+n/2+1)]

Odd symmetry definition
Y(i) = h(1)*X(i+n) + h(2)*X(i+n-1) + ... + h(n-1)*X(i+2) + h(n)*X(i+1)
Coefficients: h(1)=h(n), h(2)=h(n-1), ...  {n is odd}
Therefore: 
Y(i) = h(1)*[X(i+n)+X(i+1)] + h(2)*[X(i+n-1)+X(i+2)] + ... + h(n-1)*[X(i +(n+1)/2 +1) + X(i +(n+1)/2 -1)] + h(n)*X(i+(n+1)/2)]

Fig 3: A symmetric FIR filter
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Fig 4: Video 2d symmetry
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