
A
n embedded system can

be attacked by injecting

malware at some point.

Once installed, this can

collect confidential data, change a

system’s behaviour or induce

unpredictable actions.

These threats can be combatted

using a properly secured boot process

that allows only trusted software to

run. To sustain a high level of trust,

secure boot must rely on proven

cryptographic algorithms. While this

makes sense, a secure boot has its

own challenges:

• The most appropriate algorithms are

asymmetric, which requires intensive

computing power

• The keys associated with these

algorithms must be protected and their

integrity retained

• The implementation must be

fawless.

Authentication

To ensure the target runs only

authorised software, frmware needs to

be authenticated. This process – a

digital signature – verifes that a piece

of software is genuine and approved. 

The software loaded during

manufacturing must be signed digitally

and this process should apply to each

frmware update. A digital signature

enables trust during the device’s

lifetime.

A strong digital signature must be

computed by a public and well proven

cryptographic algorithm. If system

frmware is authenticated using an

elliptic curve digital signature

algorithm (ECDSA) and RSA, both

combined with SHA, users can have a

high level of trust. 

Asymmetric cryptography

The fundamental principle of

asymmetric cryptography is the

software developer holds the private

key, used for signing, while the

embedded device stores the public

key for verifcation. The importance of

this cannot be overstated. The major

advantage is that the confdential

element – the private key – is never

stored in the end product. Hence, if

an ECDSA or RSA algorithm is used,

an attacker cannot retrieve the

private key, even with the most

sophisticated invasive methods; all

they can get is the public key and, by

defnition, it is impossible to retrieve

the private key, even when the public

key is known.

Fig 1 shows the process fow of a

secure boot based on asymmetric

cryptography. The ECDSA and RSA

algorithms are supported by the SHA-

256 hash algorithm, which provides

the highest level of secure

authentication. 

Why do we also need SHA-256?

For performance reasons, it would be

impractical to sign the full frmware

digitally, so SHA-256 is used to

compute a unique digest (a ‘hash’

value) which cannot be forged. This

digest is then signed through ECDSA

or RSA. These same processes are

applicable to frmware updates. For

those updates, software is

downloaded, rather than programmed

during manufacture, but the digital

signature generation and verifcation

processes remain the same. 

Will the attack

be professional

or amateurish?

What will be

the financial

impact of a

successful

attack? Who

might be hurt

and how

badly? 
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Creating a defence

Fig 1: The secure boot process
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Implementation challenges 

While asymmetric cryptography offers

essential benefts, it has a resource

cost. Computing an SHA algorithm on

a large piece of software is time

consuming when done through

software. RSA or ECDSA signature

verifcation also requires overhead,

especially if the main system MCU

does not have a multiplier.

Another challenge is ensuring the

integrity of the public key and its

certifcate. While a public key does

not need to be kept confdential; it

can be disclosed because it only

allows verifcation, an attacker might

want to substitute a different public

key. If successful, the device would

authorise fraudulent software signed

by the attacker’s private key. To avoid

this, we must ensure the public key

cannot be modifed or replaced.

Many systems running on medium

range MCUs cannot implement these

basic requirements easily. Rather

than changing the main system MCU,

which might require a full redesign, a

secure MCU can be added to

implement a secure boot effciently,

handle the power and performance

criteria and protect the public key,

while guaranteeing a high level of

security. 

With an integrated secure hash

engine, the MAXQ1050 is one such

secure MCU that has the power to

accelerate the computation of the

frmware hash. This is important as

hash time impacts the system’s boot

time directly. Because it has a modulo

arithmetic accelerator, the MAXQ1050

can also perform fast ECDSA or RSA

signature verifcation.

In the feld use phase of a secure

boot implementation (see fg 1), the

MAXQ1050 will execute all steps and

then inform the main system MCU

and/or the power management IC

(PMIC) of the authentication status. It

can also provide application fexibility:

for example, one of the MAXQ1050’s

GPIOs can enable the PMIC to power

the main system MCU or one of its

GPIOs could be connected to the main

MCU’s reset pin so reset happens only

when frmware is verifed. Optionally,

the MCU’s startup could be initiated by

a specifc sequence on the

MAXQ1050’s GPIOs.

The right security

It is often diffcult to defne the

necessary level of system security.

The highest possible level often

results in high development and

manufacturing costs. Hence,

designers and users seek a trade off

between cost and security. 

Many issues affect these

decisions. Will the attack be

professional or amateurish? What will

be the fnancial impact of a successful

attack? Who might be hurt and how

badly? 

There are three potential levels of

attack.

• Basic. The system is attacked using

software. The attacker is unable, or

not tooled to perform any physical

attack or to modify any physical

characteristic of the system. 

Here, using MAXQ1050 as shown

in fg 2 provides suffcient protection. 

• Moderate. In addition to software,

the hardware can be attacked by

probing a PCB track to read a signal,

forcing the level of a digital pin and/or

removing an IC from the board.

While this level of threat is more

complex, the standard MAXQ1050

implementation in fg 2 protects

against some physical attacks, such

as an attempt to replace the serial

fash with a fake. The secure boot

sequence using SHA-256 and ECDSA

or RSA would detect any fake software.

To increase resistance to hardware

attacks without increasing costs,

additional layout precautions are

recommended, including: routing the

tracks connecting the MAXQ1050 to

the PMIC or main system MCU in the

PCB’s inner layers; using pulses or

sequences of pulses to indicate

successful boot; and using at least

two pins bearing different dynamic

signals to inform the main controller

that boot is successful. 

• High. Here invasive attacks, such

as microprobing signals on the

bonding wires of an IC, are used.

Protecting against these

sophisticated attacks requires an

implementation that is compliant with

FIPS 140-2 level 3 or 4. 

Such implementations detect any

physical tamper attempt and react

immediately by destroying sensitive

information and rendering the system

inoperable. Since restoring device

operation would require maintenance,

this level of protection should be

implemented only when security

overrides availability.

Because the MAXQ1050

incorporates self destruct inputs and

instantly erasable NVSRAM, it can

support these requirements. 

“An attacker

might want to

substitute a

different

public key. If

successful, the

device would

authorise

fraudulent

software. To

avoid this, we

must ensure

the public key

cannot be

modified or

replaced.”

Christophe

Tremlet
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Fig 2: Implementing secure boot
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